R/multipartiteBMFixedModel.R
multipartiteBMFixedModel.Rd
Estimate the parameters and give the clustering for given numbers of blocks
multipartiteBMFixedModel( list_Net, v_distrib, namesFG, v_K, classifInit = NULL, nbCores = NULL, maxiterVE = NULL, maxiterVEM = NULL, verbose = TRUE )
list_Net | A list of network (defined via the function DefineNetwork) |
---|---|
v_distrib | Type of proababilistic distributions in each network : if 0/1 then bernoulli, if counting then poisson, gaussian or Zero Inflated Gaussian (ZIgaussian) My default = Bernoulli. Must give a vector whose length is the number of networks in list_Net |
namesFG | Names of functional groups (must correspond to names in listNet) |
v_K | A vector with the numbers of blocks per functional group |
classifInit | A list of initial classification for each functional group in the same order as in namesFG |
nbCores | Number or cores used for the estimation. Not parallelized on windows. By default : half of the cores |
maxiterVE | Maximum number of iterations in the VE step of the VEM algorithm. Default value = 1000 |
maxiterVEM | Maximum number of iterations of the VEM algorithm. Default value = 1000 |
verbose | Set to TRUE to display the current step of the search algorithm |
Estimated parameters and a classification
namesFG <- c('A','B') list_pi = list(c(0.16 ,0.40 ,0.44),c(0.3,0.7)) E <- rbind(c(1,2),c(2,2),c(1,1)) typeInter <- c( "inc","diradj", "adj") v_distrib <- c('gaussian','bernoulli','poisson') list_theta <- list() list_theta[[1]] <- list() list_theta[[1]]$mean <- matrix(c(6.1, 8.9, 6.6, 9.8, 2.6, 1.0), 3, 2) list_theta[[1]]$var <- matrix(c(1.6, 1.6, 1.8, 1.7 ,2.3, 1.5),3, 2) list_theta[[2]] <- matrix(c(0.7,1.0, 0.4, 0.6),2, 2) m3 <- matrix(c(2.5, 2.6 ,2.2 ,2.2, 2.7 ,3.0 ,3.6, 3.5, 3.3),3,3 ) list_theta[[3]] <- (m3 + t(m3))/2 list_Net <- rMBM(v_NQ = c(60,50),E , typeInter, v_distrib, list_pi, list_theta, namesFG = namesFG, seed = 2)$list_Net res_MBMsimu_fixed <- multipartiteBMFixedModel(list_Net, v_distrib, namesFG = namesFG, v_K = c(3,2), nbCores = 2)#> [1] "====================== First Forward Step ==================" #> [1] "====================== First Backward Step ==================" #> [1] "====================== Last Forward Step ==================" #> [1] "====================== Last Backward Step =================="