Select the number of blocks and identify the blocks per functional group using a variational EM algorithm
multipartiteBM( list_Net, v_distrib = NULL, namesFG = NULL, v_Kmin = 1, v_Kmax = 10, v_Kinit = NULL, initBM = TRUE, save = FALSE, verbose = TRUE, nbCores = NULL, maxiterVE = NULL, maxiterVEM = NULL )
list_Net | a list of networks (defined via the function defineNetwork) i.e. a multipartite network |
---|---|
v_distrib | an optional vector of characters of length the number of networks and specifying the distribution used in each network (possible values |
namesFG | an optional vector of characters containing the names of functional groups (FG) (If Specified, must correspond to the names in |
v_Kmin | an optional vector of integers, specifying the minimal number of blocks per functional group (must be provided in the same order as in |
v_Kmax | an optional vector of integers specifying the maximal number of blocks per functional group provided in the same order as in |
v_Kinit | an optional vector of integers specifying initial numbers of blocks per FG provided in the same order as in |
initBM | an optional boolean. If initBM = TRUE an aditional initialisation is done using simple LBM or SBM on each network separatly.
Default value |
save | an optional boolean. If TRUE save the estimated parameters for intermediate visited models. Otherwise, only the better model (in ICL sense) is the ouput. Default value |
verbose | an optional boolean. If TRUE, display the current step of the search algorithm |
nbCores | an optional integer specifying the number or cores used for the estimation. Not parallelized on windows. If |
maxiterVE | an optional integer specifying the maximum number of iterations in the VE step of the VEM algorithm. If NULL then default value |
maxiterVEM | an optional integer specifying the maximum number of iterations of the VEM algorithm. If NULL then default value Default value |
a list of estimated parameters for the different models ordered by decreasing ICL. If save = FALSE
, the length is of length 1 (only the better model is returned).
fittedModel
contains the results of the inference. res$fittedModel[[1]]
is a list with fields
paramEstim
a MBMfit object.
ICL
the penalized likelihood criterion ICL.
vJ
the sequence of the varational bound of the likelihood through iterations of the VEM.
convergence
TRUE if the VEM reached convergence.
list_Net
contains the data.
The function multipartiteBM
selects the better numbers of blocks in each FG (with a penalized likelihood criterion). The model selection is performed with a forward backward strategy and the likelihood of each model is maximized with a variational EM).
namesFG <- c('A','B') list_pi <- list(c(0.16 ,0.40 ,0.44),c(0.3,0.7)) # prop of blocks in each FG E <- rbind(c(1,2),c(2,2),c(1,1)) # architecture of the multipartite net. typeInter <- c( "inc","diradj", "adj") # type of each network v_distrib <- c('gaussian','bernoulli','poisson') list_theta <- list() list_theta[[1]] <- list() list_theta[[1]]$mean <- matrix(c(6.1, 8.9, 6.6, 9.8, 2.6, 1.0), 3, 2) list_theta[[1]]$var <- matrix(c(1.6, 1.6, 1.8, 1.7 ,2.3, 1.5),3, 2) list_theta[[2]] <- matrix(c(0.7,1.0, 0.4, 0.6),2, 2) m3 <- matrix(c(2.5, 2.6 ,2.2 ,2.2, 2.7 ,3.0 ,3.6, 3.5, 3.3),3,3 ) list_theta[[3]] <- (m3 + t(m3))/2 list_Net <- rMBM(v_NQ = c(60,50),E , typeInter, v_distrib, list_pi, list_theta, namesFG = namesFG, seed = 2)$list_Net res_MBMsimu <- multipartiteBM(list_Net, v_distrib, namesFG = c('A','B'), v_Kinit = c(2,2), nbCores = 2,initBM = FALSE)#> [1] "------------Nb of entities in each functional group--------------" #> A B #> 60 50 #> [1] "------------Probability distributions on each network--------------" #> [1] "gaussian" "bernoulli" "poisson" #> [1] "-------------------------------------------------------------------" #> [1] " ------ Searching the numbers of blocks starting from [ 2 2 ] blocks" #> [1] "ICL : -6247.51 . Nb of blocks: [ 2 2 ]" #> [1] "ICL : -5727.89 . Nb of blocks: [ 3 2 ]" #> [1] "Best model------ ICL : -5727.89 . Nb of clusters: [ 3 2 ] for [ A , B ] respectively"